z-logo
open-access-imgOpen Access
Dark Isomerization of Retinals in the Presence of Phosphatidylethanolamine
Author(s) -
GROENENDIJK Gerard W. T.,
JACOBS Cor W. M.,
BONTING Sjoerd L.,
DAEMEN Frans J. M.
Publication year - 1980
Publication title -
european journal of biochemistry
Language(s) - English
Resource type - Journals
eISSN - 1432-1033
pISSN - 0014-2956
DOI - 10.1111/j.1432-1033.1980.tb06002.x
Subject(s) - isomerization , retinaldehyde , chemistry , retinal , opsin , phosphatidylethanolamine , stereochemistry , double bond , cis–trans isomerism , photochemistry , rhodopsin , biochemistry , phospholipid , membrane , phosphatidylcholine , organic chemistry , catalysis
1 Dark incubation of retinoids (retinyl ester, retinol, retinal, retinaloxime) in suspensions of rod outer segment membranes leads to substantial isomerization (and partial degradation) in the case of retinals only. 2 All‐ trans , 13‐ cis and 9‐ cis ‐retinal all isomerize at the Δ 13 double bond leading to an equilibrium with approximately 75% trans and 25% cis isomer at this bond (all‐ trans ⇔ 13‐ cis and 9‐ cis ⇔ 9,13‐ dicis ).11‐ cis ‐Retinal isomerizes irreversibly to a mixture of all‐ trans and 13‐ cis ‐retinal. 3 The active compound appears to be phosphatidylethanolamine present in the membrane. The amino group and the phosphate, as well as the hydrophobic part of the phospholipid are essential. 4 At least three factors are important for the phosphatidylethanolamine‐catalyzed isomerization as studied with the 13‐ cis isomer: the concentration of phosphatidylethanolamine, the concentration of Schiff base between retinal and phosphatidylethanolamine and the presence of lipid aggregates. 5 Based on these observations a mechanism is proposed, which satisfactorily explains the specificity of the isomerization pattern. 6 It is suggested that reisomerization of all‐ trans to 11‐ cis retinal in vivo takes place by fixation of all‐ trans retinal on an adequate surface (e.g. opsin) and a localized nucleophilic attack on the C‐11 atom, followed by trapping of the isomerized chromophore by opsin. 7 It is further concluded that retinal does not occur in vivo as a free intermediate. Direct transfer from one protein to another (opsin, retinol dehydrogenase, retinal binding proteins) seems to take place.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here