z-logo
open-access-imgOpen Access
Crosslinking with Bifunctional Reagents as a Means for Studying the Symmetry of Oligomeric Proteins
Author(s) -
HAJDU János,
BARTHA Ferenc,
FRIEDRICH Peter
Publication year - 1976
Publication title -
european journal of biochemistry
Language(s) - English
Resource type - Journals
eISSN - 1432-1033
pISSN - 0014-2956
DOI - 10.1111/j.1432-1033.1976.tb10824.x
Subject(s) - tetramer , bifunctional , reagent , chemistry , aldolase a , symmetry (geometry) , heterologous , crystallography , biochemistry , enzyme , organic chemistry , geometry , mathematics , gene , catalysis
A method based upon the principle that unlike domains of bonding are reflected in different re‐activities and distribution of residues that can be crosslinked, has been elaborated for the determination of symmetry of oligomeric proteins. The derivation of theoretical curves for the prediction of crosslinking patterns of tetramers produced by reaction with a bifunctional reagent and subsequent sodium‐dodecylsulphate‐gel electrophoretic analysis is presented. Based upon the theory the symmetry properties of a tetramer, to the extent whether it is an isologous or heterologous associationn, can be deduced by a simple calculation. Crosslinking patterns obtained with rabbit muscle aldolase and pig muscle lactate dehydrogenase after treatment with a series of diimidoesters of increasing chain length are evaluated and shown to be consistent with the expectations for isologous tetramers. From the patterns obtained with the various reagents the distances between lysyl residues located nearest to each other in different subunits in the two proteins could also be determined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here