z-logo
Premium
Selection for thermostability can lead to the emergence of mutational robustness in an RNA virus
Author(s) -
DOMINGOCALAP P.,
PEREIRAGÓMEZ M.,
SANJUÁN R.
Publication year - 2010
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/j.1420-9101.2010.02107.x
Subject(s) - biology , thermostability , robustness (evolution) , genetics , trait , rna , computational biology , gene , biochemistry , computer science , programming language , enzyme
Mutational robustness has important evolutionary implications, yet the mechanisms leading to its emergence remain poorly understood. One possibility is selection acting on a correlated trait, as for instance thermostability (plastogenetic congruence). Here, we examine the correlation between mutational robustness and thermostability in experimental populations of the RNA bacteriophage Qβ. Thermostable viruses evolved after only six serial passages in the presence of heat shocks, and genome sequencing suggested that thermostability can be conferred by several alternative mutations. To test whether thermostable viruses have increased mutational robustness, we performed additional passages in the presence of nitrous acid. Whereas in control lines this treatment produced the expected reduction in growth rate caused by the accumulation of deleterious mutations, thermostable viruses showed no such reduction, indicating that they are more resistant to mutagenesis. Our results suggest that selection for thermostability can lead to the emergence of mutational robustness driven by plastogenetic congruence. As temperature is a widespread selective pressure in nature, the mechanism described here may be relevant to the evolution of mutational robustness.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here