Premium
Long day plants and the response to global warming: rapid evolutionary change in day length sensitivity is possible in wild beet
Author(s) -
VAN DIJK H.,
HAUTEKÈETE N.
Publication year - 2007
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/j.1420-9101.2006.01192.x
Subject(s) - vernalization , biology , day length , photoperiodism , long day , climate change , bolting , latitude , mediterranean climate , ecology , botany , geodesy , geography
Day length is a key factor in flowering induction in many plant species in a seasonal environment with flowering induction usually happening at shorter day lengths in lower latitudes. Now, the climate changes systematically at a considerable speed due to global warming. As a consequence, earlier flowering will be selected for in long day plants by favouring a lower threshold for day length sensitivity, on the condition of available genetic variability. Here, we show that there is considerable genetic variation for day length sensitivity in our study species, the seabeet Beta vulgaris subsp. maritima . In the northernmost natural populations without vernalization requirement, in southwest France, the necessary day length for flowering induction could be reduced by artificial selection in <10 generations from >13 h to <11 h, the latter value corresponding to populations in the Beta ‐species complex from Northern Africa and the eastern part of the Mediterranean tested under the same conditions. A quantitative genetic analysis provided evidence of a gradual change without detectable major genes. Additional experiments were carried out to separate the response to photoperiod from age and energy effects. A certain effect of energy availability has been found, whereas age effects could be excluded. These results indicate a considerable potential for evolutionary change in adjusting flowering time in a changing climate.