z-logo
Premium
Optical sensors for clinical monitoring
Author(s) -
LÜBBERS D. W.
Publication year - 1995
Publication title -
acta anaesthesiologica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.738
H-Index - 107
eISSN - 1399-6576
pISSN - 0001-5172
DOI - 10.1111/j.1399-6576.1995.tb04254.x
Subject(s) - optode , analyte , luminescence , photometry (optics) , optics , signal (programming language) , optoelectronics , materials science , fluorescence , computer science , chemistry , physics , chromatography , stars , computer vision , programming language
Technical progresses make it now possible to monitor well known or new parameters in vivo or in the laboratory with high accuracy. Especially optical sensors can advantageously be used for many medical applications. To understand advantage and limitation of a measuring technique the basic processes will be shortly discussed. There are two types of optical sensors: 1) optical sensors which use intrinsic indicators (as for example haemoglobin or cytochromes). In this chapter tissue photometry and evaluation methods for multicomponent scattering systems are discussed; nearinfrared and NADH fluorescence measurements are shortly mentioned. 2) Optical sensors using extrinsic indicators (optodes). As extrinsic indicators absorbant as well as luminescent indicators are used. Luminescence indicators are especially sensitive. Microoptodes and two dimensional imaging is possible. From the basic molecular reactions of the sensing mechanisms follows that for most of the indicator reactions there is a non‐linear, almost hyperbolic relationship between optical signal and concentration of the analyte. Consequently, accuracy as well as sensitivity of the optode is changing in a given measuring range. Therefore, the optical indicator must be carefully selected. Lifetime (or phase angle) measurements have the advantage that their accuracy is independent of indicator concentration, intensity of the light source and light transport between the sensing element and the photometric setup. Optodes can be manufactured as flexible membranes permeable for the analyte. This facilitates the construction of fibreoptic sensors. As practical examples oxygen optodes, ion optodes, optical p CO 2 sensors, and bench‐top as well as intra‐arterial blood gas measurements are discussed in detail.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here