z-logo
Premium
Hypoxic stress triggers a programmed cell death pathway to induce vascular cavity formation in Pisum sativum roots
Author(s) -
Sarkar Purbasha,
Gladish Daniel K.
Publication year - 2012
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.2012.01632.x
Subject(s) - biology , dna fragmentation , pisum , programmed cell death , fragmentation (computing) , apoptosis , tunel assay , gel electrophoresis , microbiology and biotechnology , cytosol , cytochrome c , terminal deoxynucleotidyl transferase , ultrastructure , mitochondrion , biochemistry , botany , enzyme , ecology
Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity‐forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20–30 kb were detected by pulse‐field gel electrophoresis, but no low‐molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria‐dependent PCD pathways, was detected in the cavity‐forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia‐induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here