z-logo
Premium
A fruit‐specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry ( Fragaria × ananassa ) fruit ripening
Author(s) -
Mut Paula,
Bustamante Claudia,
Martínez Gustavo,
Alleva Karina,
Sutka Moira,
Civello Marcos,
Amodeo Gabriela
Publication year - 2008
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.2007.01046.x
Subject(s) - ripening , fragaria , aquaporin , biology , botany , horticulture , chemistry , microbiology and biotechnology
Despite the advances in the physiology of fruit ripening, the role and contribution of water pathways are still barely considered. Our aim was therefore to characterize aquaporins, proteins that render the molecular basis for putative regulatory mechanisms in water transport. We focused our work on strawberry ( Fragaria × ananassa ) fruit, a non‐climacteric fruit of special interest because of its forced brief commercial shelf life. A full‐length cDNA was isolated with high homology with plasma membrane (PM) intrinsic proteins (named FaPIP1;1), showing a profile with high expression in fruit, less in ovaries and no detection at all in other parts. Its cellular localization was confirmed at the PM. As reported in other plasma membrane intrinsic proteins subtype 1 (PIP1s), when expressing the protein in Xenopus leavis oocytes, FaPIP1;1 shows low water permeability values that only increased when it is coexpressed with a plasma membrane intrinsic protein subtype 2. Northern blotting using total RNA shows that its expression increases during fruit ripening. Moreover, functional characterization of isolated PM vesicles from red stage fruit unequivocally demonstrates the presence of active water channels, i.e. high water permeability values and a low Arrhenius activation energy, both evidences of water transport mediated by proteins. Interestingly, as many ripening‐related strawberry genes, the expression pattern of FaPIP1;1 was also repressed by the presence of auxins. We therefore report a fruit specific PIP1 aquaporin with an accumulation pattern tightly associated to auxins and to the ripening process that might be responsible for increasing water permeability at the level of the PM in ripe fruit.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here