z-logo
Premium
Protoplast isolation and culture from carob ( Ceratonia siliqua ) hypocotyls: ability of regenerated protoplasts to produce mannose‐containing polysaccharides
Author(s) -
Sotiriou Penelope,
Fry Stephen C.,
Spyropoulos Caroline G.
Publication year - 2007
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.2007.00878.x
Subject(s) - protoplast , hypocotyl , polysaccharide , ceratonia siliqua , mannose , cell wall , biology , monosaccharide , biochemistry , botany
The aim of this study was to isolate protoplasts from carob ( Ceratonia siliqua L.) embryonic tissues with the ability to regenerate cell walls, divide and synthesize galactomannan, a valuable polysaccharide for industry. Protoplasts isolated from carob hypocotyl hooks regenerated cell walls within 24 h. The first divisions of the regenerated cells were observed after 2 days of culture. The highest percentage that successfully divided was achieved when the seedlings were grown under diffuse light, the hypocotyl hooks were plasmolysed for 1 h before incubation in the protoplast isolation solution and the protoplasts were cultured under diffuse light. After 9 days of culture, cell clusters, consisting of eight cells, had been produced, which underwent further mitotic divisions and which were expected to lead to callus formation. Polysaccharide and oligosaccharide synthesis during protoplast regeneration was studied by radiolabelling with exogenous d ‐[U‐ 14 C]glucose, d ‐[U‐ 14 C]mannose or d ‐[2‐ 3 H]mannose, which gave rise to uniform, moderately specific and highly specific labelling, respectively. As revealed by the radioactivity distribution in cell wall monosaccharides, the regenerants deposited new wall polymers that differed markedly from those being synthesized by the hypocotyls from which the protoplasts had been isolated. The regenerants deposited large amounts of callose and smaller amounts of galactose‐, arabinose‐ and mannose‐containing polymers. The latter included glucuronomannan, as demonstrated by a new method involving partial acid hydrolysis followed by β‐glucuronidase (EC 3.2.1.31) digestion. The regenerating protoplasts also released soluble extracellular carbohydrates: polysaccharides which appeared to be mainly acidic arabinogalactans, and oligosaccharides which were mainly neutral and contained glucose, galactose and mannose. We conclude that regenerating carob protoplasts are a useful system for studying carbohydrate secretion, including mannose‐rich poly‐ and oligosaccharides.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here