z-logo
Premium
Correlation between chlorophyllide esterification, Shibata shift and regeneration of protochlorophyllide650 in flash‐irradiated etiolated barley leaves
Author(s) -
Rassadina Valentina,
Domanskii Vladimir,
Averitalia G.,
Schoch Siegrid,
Rüdiger Wolfhart
Publication year - 2004
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.2004.00362.x
Subject(s) - protochlorophyllide , etiolation , hordeum vulgare , kinetin , pigment , chemistry , biochemistry , botany , biology , biosynthesis , enzyme , organic chemistry , poaceae , in vitro , tissue culture
The pigments of etiolated leaves of barley ( Hordeum vulgare L.) were analysed during dark periods after flash illumination, and the results were compared with in vivo spectroscopy of the leaves. Pretreatment of the leaves with kinetin slightly stimulated and pretreatment with NaF and anaerobiosis inhibited the esterification of chlorophyllide a (Chlide) at 10–40 min after the flash, whereas the rapid esterification within 30 s after the flash remained unchanged. Irrespective of pretreatment, the amount of esterified pigment was, at any time, identical with the amount of pigment that had shifted its absorption from 684 to 672 nm (Shibata shift). Cycloheximide (CHI) had only a small inhibitory effect on esterification, but drastically inhibited the hydrogenation of geranylgeraniol to phytol, bound to Chlide. The regeneration of long‐wavelength protochlorophyllide a (Pchlide650) was stimulated by kinetin and inhibited by CHI and NaF. During the rapid phase (0–30 s after the flash), the esterification was faster than the regeneration of Pchlide650, and this, in turn, was faster than the formation of photoactive Pchlide. The kinetics changed after pretreatment with 5‐aminolaevulinic acid: regeneration of Pchlide650 was the fastest reaction and the Shibata shift preceded the esterification of Chlide. The results are discussed as pigment exchange reactions at NADPH:protochlorophyllide oxidoreductase (POR; EC 1.6.99.1).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here