Premium
Coppicing alters ecophysiology of Quercus rubra saplings in Wisconsin forest openings
Author(s) -
Kruger Eric L.,
Reich Peter B.
Publication year - 1993
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1993.tb05280.x
Subject(s) - photosynthesis , stomatal conductance , coppicing , shoot , fagaceae , ecophysiology , biology , botany , vapour pressure deficit , horticulture , morning , woody plant , transpiration
In the spring of 1987, entire shoots were removed from Quercus rubra L. saplings in two southwestern Wisconsin forest openings. Shoots possessed newly expanding leaves at the time of coppicing. All coppiced individuals sprouted from dormant stem buds near the root collar. Leaf gas exchange and water potential were monitored on these sprouts and on untreated (control) Q. rubra saplings throughout several clear warm days during the 1987 growing season. Daily maxima and averages for sprout leaf photosynthesis and stomatal conductance generally exceeded those of controls. On average, treatment differences in daily maximum photosynthetic rate were modest (11–14%) and were attributed primarily to a 30–38% enhancement of sprout leaf stomatal conductance. Relative differences in daily average photosynthetic rate (29–39%) were substantially larger than those in daily maximum photosynthesis, owing to the fact that sprouts and controls exhibited distinct diurnal gas exchange patterns. Photosynthetic rate and stomatal conductance of control leaves typically declined during the day following a mid‐morning maximum. Sprout leaves, on the other hand, tended to maintain gas exchange rates nearer to their morning maxima throughout the day. This difference in diurnal gas exchange pattern was associated with an apparent differential leaf sensitivity to leaf‐to‐air vapor pressure gradient (VPG). The relative decline in sprout leaf gas exchange rates with increasing VPG was less than that of controls. Treatment differences in gas exchange did not appear to be related to leaf water potential or tissue water relations, but sprouts had a higher soil‐to‐leaf hydraulic conductivity than controls.