z-logo
Premium
On the inducibility of nitrate transport by tobacco cells
Author(s) -
Guy Micha,
Heimer Yair M.
Publication year - 1993
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1993.tb05220.x
Subject(s) - nitrate , cycloheximide , nitrate reductase , depolarization , nicotiana tabacum , biochemistry , chemistry , biology , biophysics , botany , ecology , protein biosynthesis , gene
The question as to whether the nitrate transport system is induced by nitrate was addressed using a cell suspension of the XD line of Nicotiana tabacum L. cv. Xanthi as an experimental system. The cells were grown on area as the sole nitrogen source, and tungstate was used to render nitrate reductase non‐functional. To avoid shock due to vacuum filtration, the cells, were harvested by gravity filtration. Nitrate uptake by cells, which were harvested, transferred to fresh medium, and immediately exposed to nitrate (freshly harvested cells), displayed a lag period of about 3 h. In cells which were given incubation periods in fresh medium before exposure to nitrate (preincubated cells), the lag period was considerably shortened. After 3 h of preincubation in the absence of nitrate (recovered cells), the lag period was almost completely eliminated. Cycloheximide inhibited nitrate uptake by recovered cells within minutes, and prevented the development of nitrate uptake in freshly harvested cells. Cycloheximide did not affect uptake of α‐aminoisobutyric acid (AIB) within the first 2 h after its addition. Recovery of the membrane potential from a low value just after the harvest of the cells to a maximal value 3 h later, was observed using the lipophilic cation methyltriphenylphosphonium (MTPP + ), supplied at low concentrations, as a probe. Depolarization of the membrane potential by MTPP + , at the millimolar range, caused a rapid inhibition of nitrate uptake by recovered cells. The results indicate that nitrate transport by the XD cells depends on the membrane potential and on protein components with short half life. In addition, it requires a continuous protein synthesis. The effects of physical manipulation on nitrate uptake are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here