z-logo
Premium
Analysis of apoplastic solutes in the cortex of soybean nodules
Author(s) -
Streeter John G.
Publication year - 1992
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1992.tb04708.x
Subject(s) - apoplast , xylem , phloem , cortex (anatomy) , biochemistry , biology , botany , biophysics , penetration (warfare) , symplast , chemistry , cell wall , operations research , neuroscience , engineering
Various techniques were used to extract solutes from the free space of intact soybean [ Glycine max (L.) Merr.] nodules. A variety of solutes (carbohydrates, amino acids, organic acids, ions) was found, but the major solute obtained with all methods was allantoic acid. Most work was done with a technique involving vacuum infiltration of intact detached nodules with water. This approach provided rapid sampling of the apoplastic solutes, and the results indicated that solutes were not derived from the xylem and phloem of ruptured vascular bundles. Infiltration of intact nodules with Fast Green showed dye penetration only to the barrier in the inner cortex, indicating that infected tissues did not contribute to solute composition. Although allantoic acid was the only ureide which could be detected in solute samples, no evidence was obtained for the presence of allantoinase in the cortical apoplast. The results suggest the transport of allantoic acid by an apoplastic route in nodules or the release of allantoic acid to the cortical apoplast in response to treatments which disrupt ureide export. Calculated values for solute concentrations in the cortical apoplast were in the hundred millimolar range, suggesting that apoplastic solutes may represent a significant osmotic component in the nodule cortex.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here