Premium
Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimation
Author(s) -
Augé R. M.,
Schekel K. A.,
Wample R. L.
Publication year - 1987
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1987.tb06128.x
Subject(s) - turgor pressure , elasticity (physics) , acclimatization , biology , agronomy , horticulture , botany , materials science , composite material
Tissue elasticity can affect plant response to drought, in terms of turgor maintenance and water uptake from drying soils. The purpose of this study was to determine the effect of mycorrhizal colonization and drought acclimation on rose ( Rosa hybrida L. cv. Samantha) leaf elasticity. Bulk elasticity was characterized by the pressurevolume method using plots of the elastic modulus as a function of leaf turgor pressure, total water potential and relative water content. The treatments, arranged in a 2 × 3 factorial design, included acclimated and unacclimated plants, and either Glomus irararadices Schenck and Smith, Glomus deserticola Trappe, Bloss and Menge, or a non‐mycorrhizal control. Plants with root mycorrhizal colonization showed reduced leaf elasticity (i.e. higher elastic moduli) over a broad range of leaf waler potential and water content. Both mycorrbizal colonization and acclimation facilitated the maintenance of positive values of turgor and elasticity at lower leaf water potential and water content than in controls. Mycorrhizal infections may aid plants in acclimating to water deficits through effects on leaf tissue elasticity.