Premium
Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity
Author(s) -
Steingröver Eveliene,
Ratering Pieter,
Siesling Johan
Publication year - 1986
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1986.tb05965.x
Subject(s) - nitrate , spinacia , spinach , nitrate reductase , chemistry , chenopodiaceae , shoot , vacuole , horticulture , botany , biology , chloroplast , biochemistry , cytoplasm , organic chemistry , gene
Under poor light conditions, as normally used during winter production of greenhouse vegetables, the nitrate concentration in the shoot of spinach ( Spinacia oleracea L. cv. Vroeg Reuzenblad) showed a diurnal rhythm. This rhythm was mainly caused by a decrease during the day, followed by an increase during the night in the leaf blade nitrate concentration. Nitrate was mainly located in the vacuoles of the leaf blades. A strong correlation was found between net uptake of nitrate by the roots and the nitrate concentration in the leaf blade vacuoles. The nitrate concentration in the leaf blades increased during the initial hours of the night. This increase was caused by a marked increase in the net uptake rate of nitrate by the roots during the first hours of the dark period. During the second part of the night both net uptake rate of nitrate by the roots and the vacuolar nitrate concentration in the leaf blades remained constant. We conclude that nitrate is taken up for osmotic purposes when light conditions are poor because of a lack of organic solutes. During the night, nitrate influx into the vacuole is needed for replacement of organic solutes, which are metabolized during the night, and possibly also for leaf elongation growth. During the day, vacuolar nitrate may be exchanged for newly synthesized organic solutes and be metabolized in the cytoplasm. A strong diurnal rhythm in nitrate reductase (NR; EC 1.6.6.1.) activity was absent, due to the poor light conditions, and in vitro NR activity was not correlated with nitrate flux from the roots. In vivo NR activity also lacked a strong diurnal rhythm, but it was calculated that in situ nitrate reduction was much lower during the night, so that the major nitrate assimilation took place during the day.