z-logo
Premium
Comparison of K,MgATPases in purified plasmalemma from wheat and oat. – Substrate specificities and effects of pH, temperature and inhibitors
Author(s) -
Sommarin Marianne,
Lundborg Tomas,
Kylin Anders
Publication year - 1985
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1985.tb02354.x
Subject(s) - avena , vanadate , oligomycin , chemistry , ouabain , biochemistry , phosphatase , caryopsis , atpase , enzyme , coleoptile , ammonium molybdate , ammonium , substrate (aquarium) , chromatography , poaceae , biology , botany , sodium , zinc , organic chemistry , ecology
Plasmalemma from 8‐day old oat ( Avena sativa L. cv. Brighton) and spring wheat ( Triticum aestivum L. cv. Drabant), grown in the dark at 18°C, was prepared from the 10000 g (10 min) – 30 000 g (60 min) root homogenate by two‐phase separation in three steps with 6.5% (w/w) Dextran T 500 and 6.5% (w/w) polyethylene glycol 4 000. Biochemically and with respect to activation by Mg 2+ as well as by (Mg 2+ + K + ), the oat preparations clearly appeared as ATPase(s) in the pH range 5–8. They showed high specificity for ATP, temperature optima between 38 and 40°C, and were inhibited by vanadate, DCCD (dicyclohexylcarbodiimide) and SH‐reagents, but not by oligomycin, ammonium molybdate or ouabain. In contrast, the preparations from wheat contained more than one type of MgATPase/ nucleotidase, as revealed by complex dependence on both pH and temperature as well as by comparatively low specificity towards nucleotides. However, no unspecific phosphatase was present, and the effect of K + over and above that of Mg 2+ was almost as specific as in oat by all criteria used. The data available from this and earlier investigations from our group would indicate that the complex reactions of preparations of wheat plasmalemma may not be due to contamination but, rather, expressions of the many biological functions that must be associated with the plasmalemma in vivo and which may be located in sub‐units that are more firmly attached to wheat than to oat plasmalemma.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom