z-logo
Premium
The antagonism of IAA‐induced hydrogen ion extrusion and coleoptile growth by diclofop‐methyl
Author(s) -
Shimabukuro M. A.,
Shimabukuro R. H.,
Walsh W. C.
Publication year - 1982
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1982.tb04538.x
Subject(s) - coleoptile , avena , elongation , iodoacetic acid , biology , biochemistry , avena fatua , chemistry , botany , enzyme , germination , materials science , metallurgy , ultimate tensile strength
Diclofop‐methyl (DM) (ester) was readily absorbed by peeled and unpeeled coleoptiles of wheat, Triticum aestivum L. cv. Waldron, and oat, Avena sativa L. cv. Garry. Substantial absorption of diclofop (acid) occurred only in peeled coleoptiles of the two species. IAA‐induced acidification in peeled coleoptiles of both species was inhibited by 100 μ M DM or diclofop (acid) during a 3 to 4 h period. There was no recovery of acidification after DM or diclofop inhibition in oat coleoptiles; however, acidification in wheat coleoptiles recovered from inhibition by DM but not from diclofop. The recovery from DM inhibition may be due to a reduction in the diclofop pool derived from DM by efflux and metabolism (detoxification) in peeled wheat coleoptiles. Diclofop was not detoxified in oat coleoptiles. IAA‐induced elongation of unpeeled oat coleoptiles was inhibited totally by 100 μ M DM but not by 100 μ M diclofop after 3.3 h of treatment. Wheat coleoptile elongation was relatively unaffected by either DM or diclofop. Basal elongation (no IAA) of both wheat and oat coleoptiles was inhibited by DM and diclofop. The inhibition by DM appeared to be irreversible, whereas the inhibition by diclofop was overcome by the addition of 10 μ M IAA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here