Premium
The Glycine‐Glomus‐Rhizobium symbiosis
Author(s) -
Bethemfalvay Gabor J.,
Yoder Joseph F.
Publication year - 1981
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1981.tb06047.x
Subject(s) - nitrogenase , glomus , nitrogen fixation , shoot , biology , dry weight , inoculation , glycine , symbiosis , rhizobium , horticulture , botany , bacteria , biochemistry , amino acid , genetics
Soybean [ Glycine max , (L.) Merr, cv. Lancer] plants were grown in a sterile rooting medium watered daily with a nutrient solution containing 4, 20, 100, or 500 μM, P. Plants were inoculated with Rhizobium japonicum , strain 61A118 and grown in the presence or absence of the endomycorrhizal fungus Glomus fasciculatus , Gerdemann et Trappe. Plants grown at the highest P regime had six times higher shoot dry weight than those grown in the lowest P regime. Nodulation did not occur at 4 μM P. Nodule dry weight increased 200‐fold from the 20 to the 500 μM P treatment. Percentage P in shoots and nodules differed significantly among all treatment levels. Acetylene reduction by nitrogenase increased logarithmically with increasing amounts of P. Hydrogen evolution was not detectable at the 20 μM P level. The relative efficiency of nitrogen fixation increased with increasing P stress. Infection by Glomus fasciculatus , at the 500 μM P level was negligible and did not affect the parameters measured. At all other treatment levels the mycorrhizal plants had significantly higher rates of N 2 fixation, plant and nodule mass and P content.