Premium
Protein synthesis during the transition from the resting to the growing state in suspension cultures of Paul's Scarlet rose cells
Author(s) -
Fosket Donald E.
Publication year - 1981
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1981.tb04124.x
Subject(s) - polysome , protein biosynthesis , biology , ribosome , mitosis , cell division , methionine , biochemistry , thymidine , centrifugation , rna , microbiology and biotechnology , in vitro , cell , amino acid , gene
Cells derived from Paul's Scarlet rose ( Rosa sp. ) were grown in the chemically defined medium of Nesius. When a stationary phase culture was diluted with fresh medium, growth was initiated after a pronounced lag period. DNA replication, as revealed by thymidine labeling and autoradiography, did not begin until 36 h, and mitotic figures were not observed until 48 h after dilution. A 10–15 fold increase in the rate of protein synthesis occurred during the lag period. This was brought about by a 3.5 fold increase in the amount of ribosomal RNA per cell, plus a doubling of both the percentage of ribosomes that are present as polyribosomes and the average number of ribosomes per polyribosome. The spectrum of polypeptides synthesized by these cells during the lag and early log periods of growth was examined. Polyribosomes were extracted from the cells at intervals preceding and accompanying the initiation of proliferative growth. The polyribosomes were translated in a wheat germ cell‐free protein synthesizing system and the 35 S‐methionine‐labeled translation products were separated on polyacrylamide slab gels and by 2‐dimensional gel electrophoresis. Comparatively few differences were observed between stationary phase, lag phase and log phase cells in terms of the spectrum of polypeptides synthesized in vitro. However, these various phases of the growth cycle could be characterized by a relatively high rate of synthesis of a few specific polypeptides. That is, while most proteins are synthesized throughout the growth cycle and even in non‐growing cells at approximately the same relative rates, there are a few variable proteins whose synthesis marks a particular phase of the growth cycle.