Premium
Oscillatory Transpiration of Avena Plants: Perturbation Experiments Provide Evidence for a Stable Point of Singularity
Author(s) -
JOHNSSON A.,
BROGARDH T.,
HOLJE Ø.
Publication year - 1979
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1979.tb02602.x
Subject(s) - transpiration , avena , perturbation (astronomy) , physics , amplitude , lemna gibba , botany , biology , ecology , photosynthesis , quantum mechanics , aquatic plant , macrophyte
Oscillatory plant water regulation of young Avena plants was studied. The period of the oscillations was around 40 min. Pulse perturbations were given to plants showing oscillations in the transpiration rate. Perturbations consisted in temporary irradiance changes of the leaf or in water potential changes around the root. The effect of the pulse perturbations on the amplitude of the oscillations was recorded. The oscillations could be permanently halted after a perturbation of suitable magnitude given at a suitable phase of The oscillations. A subsequent perturbation could restart the oscillations again. By means of simulations it was shown that a feedback model For the transpiration oscillations could explain the experimental outcome if a non finearity of a special kind was incorporated. The circadian eclosion rhythm of Drosophila pseudoobscura and the petal rhythm of Kalanchoe blossfeldiana show many features in common with the experiments reported. Biophysically the present results indicate that the transpiration oscillations of Avena plants have a stable point of equilibrium or a stable point of singularity.