Premium
Movement of Amyloplasts in the Statocytes of Geotropically Stimulated Roots. The Pre‐Inversion Effect
Author(s) -
IVERSEN TORHENNING,
LARSEN POUL
Publication year - 1973
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1973.tb01171.x
Subject(s) - amyloplast , biophysics , stimulation , organelle , root cap , physics , chemistry , botany , microbiology and biotechnology , biology , plastid , biochemistry , chloroplast , neuroscience , shoot , meristem , gene
Previously inverted Lepidium roots were placed in a horizontal position and the amyloplasts in the statocytes of the root cap allowed to fall through their entire range of movement across the cell. Under these conditions the amyloplasts first follow a mainly downward course for 6 to 8 min at a speed between 0.5 and 0.8 μm per min. For the next 10 min they move slightly more slowly in a direction away from the apical end of the cell, still sinking somewhat, but without reaching the plasmalemma along the lower wall. Previous experiments have shown that conditions assumed to allow the amyloplasts to slide parallel to the longitudinal cell walls are those that give rise to the largest geotropic curvatures. Such conditions are for instance (1) stimulation at 135° (root tips pointing obliquely upward) and (2) inversion of roots for 16 min followed by stimulation at 45°. Treatments assumed not to permit extensive sliding of the amyloplasts produce smaller geotropic curvatures, namely (3) stimulation at 45° without pre‐inversion and (4) inversion followed by stimulation at 135°. The location of the amyloplasts after these four kinds of treatment has now been determined on photomicrographs and the assumptions concerning the paths and extent of sliding of the amyloplasts confirmed. Observations on electron micrographs showed that under all conditions the amyloplasts are separated from the plasmalemma by other organelles, such as ER, nucleus or vacuoles. In roots rotated for 15 min parallel to the horizontal axis of the klinostat at 2 rpm, the amyloplasts are not clumped together as densely as in normal, inverted or stimulated roots, but they are not scattered over the entire cell volume. The statolith function of the amyloplasts is discussed in view of these and other observations.