Premium
Photomophogenesis in the Blue‐green Alga Nostoc commune 584
Author(s) -
Robinson Beatrice L.,
Miller John H.
Publication year - 1970
Publication title -
physiologia plantarum
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.351
H-Index - 146
eISSN - 1399-3054
pISSN - 0031-9317
DOI - 10.1111/j.1399-3054.1970.tb06436.x
Subject(s) - biology , motility , botany , red light , blue light , trichome , microbiology and biotechnology , physics , optics
The blue‐green alga Nostoc commune 584 displays a photocontrolled developmental cycle similar to that described for N. muscorum A by Lazaroff and Vishniac (1961). In both species white fluorescent light acts at the same stage, ragulating the development of motile trichomes from sheathed aseriate colonies. However white light blocks this step in N. commune 584, whereas the formation of motile trichomes is promoted by white light in N. muscorum A. Light‐grown (aseriate) cultures in N. commune 584 were used to determine the action spectra for photomorphogenesis. Green light (max 520 nm) inhbited aseriate colony breakage, and red light (max 640 nm) promoted colony breakage and the differentiation of motile trichomes. On a quantum basis green light was about 3 times more effective than red light. The morphogenetic effects of either red or green light were reversible by irradiation with the other color of light. Repeated photoreversibility was observed, and the algal culutres responded only to the color of the last irradiation in a sequence. An unidentified substance is excreted into the media of motile cultures of both N. commune 584 and N. muscorum A which promotes motility in non‐motile cultures. The motility‐promoting substances from both species are reciprocally active. Activity is lost when the media are autoclaved.