Premium
Adverse central nervous system effects of older antihistamines in children
Author(s) -
Simons F. Estelle R.,
Fraser Terry G.,
Reggin James D.,
Roberts Janet R.,
Simons Keith J.
Publication year - 1996
Publication title -
pediatric allergy and immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.269
H-Index - 89
eISSN - 1399-3038
pISSN - 0905-6157
DOI - 10.1111/j.1399-3038.1996.tb00101.x
Subject(s) - diphenhydramine , medicine , somnolence , hydroxyzine , placebo , anesthesia , visual analogue scale , histamine h1 receptor , antihistamine , histamine , population , adverse effect , pharmacology , receptor , antagonist , alternative medicine , pathology , environmental health
Although older, potentially sedating, “first‐generation” antihistamines (H 1 ‐receptor antagonists) are commonly used in childhood, their central nervous system (CNS) effects have not been well‐documented in young subjects. We hypothesized that diphenhydramine and hydroxyzine would affect CNS function adversely in this population. Our objective was to evaluate the effects of these medications on central and peripheral histamine H 1 ‐receptors in children. Fifteen subjects with allergic rhinitis were tested before and 2‐2. 5 h after administration of diphenhydramine, hydroxyzine, or placebo in a double‐blind, single‐dose, three‐way crossover study. Impairment of cognitive processing was assessed objectively by the latency of the P300 event‐related potential (P300). Somnolence was assessed subjectively by a visual analog scale. Peripheral H 1 ‐blockade was assessed by suppression of the histamine‐induced wheals and flares. At the central (Cz) and frontal (Fz) electrodes, diphenhydramine and hydroxyzine increased the P300 latency significantly ( P < 0.05) compared to baseline. Hydroxyzine increased somnolence, as recorded on the visual analog scale, significantly compared to baseline ( P < 0.05), with a similar trend for diphenhydramine ( P = 0.07). Both antihistamines reduced histamine‐induced wheals and flares significantly compared to baseline and compared to placebo. In children, diphenhydramine and hydroxyzine are effective H 1 ‐receptor antagonists, but both these medications cause CNS dysfunction, as evidenced by increased P300 latency, a measure of cognitive function, and by increased subjective somnolence.