z-logo
Premium
Exploring plant endomembrane dynamics using the photoconvertible protein Kaede
Author(s) -
Brown Spencer C.,
Bolte Susanne,
Gaudin Marie,
Pereira Claudia,
Marion Jessica,
Soler MarieNoëlle,
SatiatJeunemaitre Béatrice
Publication year - 2010
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/j.1365-313x.2010.04272.x
Subject(s) - golgi apparatus , endomembrane system , organelle , secretory pathway , microbiology and biotechnology , biology , live cell imaging , population , protein subcellular localization prediction , chemistry , cell , endoplasmic reticulum , biochemistry , gene , demography , sociology
Summary Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light‐induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse–chase analysis of protein traffic. The Kaede gene codes for a tetrameric protein found in the stony coral Trachyphyllia geoffroyi , which emits green fluorescence that irreversibly shifts to red following radiation with UV or violet light. We report here the use of Kaede to explore the plant secretory pathway. Kaede versions of the Golgi marker sialyl‐transferase (ST‐Kaede) and of the vacuolar pathway marker cardosin A (cardA‐Kaede) were engineered. Several optical devices enabling photoconversion and observation of Kaede using these two constructs were assessed to optimize Kaede‐based imaging protocols. Photoconverted ST‐Kaede red‐labelled organelles can be followed within neighbouring populations of non‐converted green Golgi stacks, by their gradual development of orange/yellow coloration from de novo synthesis of Golgi proteins (green). Results highlight some aspects on the dynamics of the plant Golgi. For plant bio‐imaging, the photoconvertible Kaede offers a powerful tool to track the dynamic behaviour of designated subpopulations of Golgi within living cells, while visualizing the de novo formation of proteins and structures, such as a Golgi stack.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here