z-logo
Premium
The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I‐2
Author(s) -
Van Ooijen Gerben,
Lukasik Ewa,
Van Den Burg Harrold A.,
Vossen Jack H.,
Cornelissen Ben J. C.,
Takken Frank L. W.
Publication year - 2010
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/j.1365-313x.2010.04260.x
Subject(s) - heat shock protein , heat resistance , function (biology) , shock (circulatory) , resistance (ecology) , stability (learning theory) , protein stability , microbiology and biotechnology , chemistry , biology , control theory (sociology) , materials science , computer science , biochemistry , agronomy , medicine , composite material , gene , control (management) , machine learning , artificial intelligence
Summary Race‐specific disease resistance in plants depends on the presence of resistance ( R ) genes. Most R genes encode NB‐ARC‐LRR proteins that carry a C‐terminal leucine‐rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report the identification of RSI2 (Required for Stability of I‐2) as a protein that interacts with the LRR domain of the tomato R protein I‐2. RSI2 belongs to the family of small heat shock proteins (sHSPs or HSP20s). HSP20s are ATP‐independent chaperones that form oligomeric complexes with client proteins to prevent unfolding and subsequent aggregation. Silencing of RSI2‐related HSP20s in Nicotiana benthamiana compromised the hypersensitive response that is normally induced by auto‐active variants of I‐2 and Mi‐1, a second tomato R protein. As many HSP20s have chaperone properties, the involvement of RSI2 and other R protein (co)chaperones in I‐2 and Mi‐1 protein stability was examined. RSI2 silencing compromised the accumulation of full‐length I‐2 in planta , but did not affect Mi‐1 levels. Silencing of heat shock protein 90 (HSP90) and SGT1 led to an almost complete loss of full‐length I‐2 accumulation and a reduction in Mi‐1 protein levels. In contrast to SGT1 and HSP90, RSI2 silencing led to accumulation of I‐2 breakdown products. This difference suggests that RSI2 and HSP90/SGT1 chaperone the I‐2 protein using different molecular mechanisms. We conclude that I‐2 protein function requires RSI2, either through direct interaction with, and stabilization of I‐2 protein or by affecting signalling components involved in initiation of the hypersensitive response.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here