Premium
A two‐stage exhumation of the Variscan crust: U–Pb LA‐ICP‐MS and Rb–Sr ages from Greater Kabylia, Maghrebides
Author(s) -
Hammor D.,
Bosch D.,
Caby R.,
Bruguier O.
Publication year - 2006
Publication title -
terra nova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.353
H-Index - 89
eISSN - 1365-3121
pISSN - 0954-4879
DOI - 10.1111/j.1365-3121.2006.00693.x
Subject(s) - geology , anatexis , continental crust , terrane , shear zone , geochemistry , crust , nappe , rift , stage (stratigraphy) , tectonics , petrology , paleontology , partial melting
Abstract The significance and role of major shear zones are paramount to understanding continental deformation and the exhumation of deep crustal levels. LA‐ICPMS U–Pb dating of monazites, combined with Rb–Sr analyses of biotites, from an anatectic metapelite from Greater Kabylia (Algeria) highlights the history of shear zone development and the subsequent exhumation of deep crustal levels in the internal zones of the Maghrebides. Monazites give an age of 275.4 ± 4.1 Ma (2 σ ) dating the thermal peak coeval with anatexis. This age is identical to those recorded in other crystalline terranes from south‐easternmost Europe (i.e. South Alpine and Austro‐Alpine domains) that suffered crustal thinning during the continental rifting predating the Tethys opening. Rb–Sr analyses of biotites yield a cooling age of 23.7 ± 1.1 Ma related to the exhumation of the buried Variscan crust during the Miocene as an extrusive slice, roughly coeval with the emplacement of nappes, and shortly followed by lithospheric extension leading to the opening of the Alboran sea.