Premium
Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end‐Permian mass extinction
Author(s) -
Rampino Michael R.,
Caldeira Ken
Publication year - 2005
Publication title -
terra nova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.353
H-Index - 89
eISSN - 1365-3121
pISSN - 0954-4879
DOI - 10.1111/j.1365-3121.2005.00648.x
Subject(s) - extinction event , carbon cycle , geology , permian , permian–triassic extinction event , alkalinity , carbonate , oceanography , isotopes of carbon , atmosphere (unit) , paleontology , total organic carbon , sedimentary rock , ecosystem , ecology , environmental chemistry , chemistry , physics , demography , organic chemistry , structural basin , sociology , biology , thermodynamics , biological dispersal , population
The severe mass extinction of marine and terrestrial organisms at the end of the Permian Period ( c. 251 Ma) was accompanied by a rapid (<100 000 years and possibly <10 000 years) negative excursion of c. 3‰ in the δ 13 C of the global surface oceans and atmosphere that persisted for some 500 000 years into the Early Triassic. Simulations with an ocean–atmosphere/carbon‐cycle model suggest that the isotope excursion can be explained by collapse of ocean primary productivity, and changes in the delivery and cycling of carbon in the oceans and on land. Model results suggest that severe reduction of marine productivity led to an increase in surface‐ocean dissolved inorganic carbon and a rapid, short‐term increase in atmospheric pCO 2 (from a Late Permian base of 850 ppm to c. 2500 ppm). Increase in surface ocean alkalinity may have stimulated the widespread microbial and abiotic shallow‐water carbonate deposition seen in the earliest Triassic. The model is also consistent with a long‐term (>1 Ma) decrease in sedimentary burial of organic carbon in the early Triassic.