Premium
Neptunian dykes along a drowned carbonate platform margin: an indication for recurrent extensional tectonic activity?
Author(s) -
Lehner Benedikt L.
Publication year - 1991
Publication title -
terra nova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.353
H-Index - 89
eISSN - 1365-3121
pISSN - 0954-4879
DOI - 10.1111/j.1365-3121.1991.tb00201.x
Subject(s) - geology , extensional tectonics , carbonate platform , paleontology , aptian , passive margin , plateau (mathematics) , extensional definition , tectonics , geochemistry , geomorphology , cretaceous , rift , structural basin , sedimentary depositional environment , mathematical analysis , mathematics
ABSTRACT Three successive Mesozoic neptunian dyke generations and related unconformities suggest recurrent extensional fracturing and periods of relative sea‐level rise along the NW Trento Plateau margin in the Southern Alps, Italy. The first neptunian dyke generation was induced by NNW–SSE directed extension of Early Jurassic skeletal oolitic periplatform deposits generating micritic early Middle Liassic neptunian dykes with orthogonal orientation. The second generation of neptunian dykes was possibly caused by marginal extension at the drowned platform edge penetrating Late Jurassic, red pelagic limestones with a pelagic matrix of Albian/Cenomanian age and nearly orthogonal fracture orientation. The third generation of neptunian dykes occurred after a prolonged period of submarine exposure and erosion (Aptian/Albian to Late Maastrichtian) during the rapid burial of the submarine Trento Plateau margin relief. The Late Maastrichtian neptunian dykes were caused by extension of Early to Middle Jurassic oolitic periplatform limestones along steep (inclination > 10°) submarine slopes. Generally successive neptunian dyke generations along drowned carbonate platform margins could be caused by repeated extensional brittle fracturing of lithified periplatform deposits and the filling of micritic matrix derived from overlying pelagic sediment sequences under substantial hydrostatic pressure. This would suggest that recurrent extensional fracturing is continuously recorded by neptunian dyke formation which could be used to indicate extensional tectonic activity at a foundering deep‐marine carbonate platform edge.