Premium
Phylogeny of the bees of the family Apidae based on larval characters with focus on the origin of cleptoparasitism (Hymenoptera: Apiformes)
Author(s) -
STRAKA JAKUB,
BOGUSCH PETR
Publication year - 2007
Publication title -
systematic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 66
eISSN - 1365-3113
pISSN - 0307-6970
DOI - 10.1111/j.1365-3113.2007.00394.x
Subject(s) - biology , monophyly , tribe , subfamily , zoology , apidae , taxon , maximum parsimony , phylogenetic tree , clade , botany , hymenoptera , genetics , sociology , gene , anthropology
Fifty‐four genera of the bee family Apidae comprising almost all tribes were analysed based on 77 traditional and one new character of the mature larvae. Nine, especially cleptoparasitic species, were newly added. Analyses were performed by maximum parsimony and Bayesian inference. Trees inferred from the analysis of the complete dataset were rooted by taxa from the families Melittidae and Megachilidae. Unrooted trees inferred from the analysis of the partial dataset (excluding outgroup taxa) are also presented to preclude possible negative effects of the outgroup on the topology of the ingroup. Only the subfamily Nomadinae was statistically well supported. The monophyly of the subfamilies Xylocopinae and Apinae was not topologically recovered. The monophyly of the tribe Tetrapediini was supported, and this tribe was found to be related to xylocopine taxa. At the very least, larval morphology suggests that Tetrapedia is not a member of the subfamily Apinae. Our analyses support the monophyly of the Eucerine line (Emphorini, Eucerini, Exomalopsini, Tapinotaspidini) and of the Apine line (Anthophorini, Apini, Bombini, Centridini, Euglossini, Meliponini). All analyses support the monophyly of totally cleptoparasitic tribes of the subfamily Apinae. We named this group the Melectine line (Ericrocidini, Isepeolini, Melectini, Osirini, Protepeolini, Rhathymini). In previous studies all these cleptoparasitic tribes were considered independent evolutionary lineages. Our results suggest that their similarities with hosts in morphology and pattern are probably the result of convergence and host–parasite co‐evolution than phylogenetic affinity. According to the present analysis, the cleptoparasitism has evolved independently only six times within the family Apidae.