z-logo
Premium
Ichnology and sedimentology of the Triassic carbonates of North‐west Sardinia, Italy
Author(s) -
KNAUST DIRK,
COSTAMAGNA LUCA G.
Publication year - 2012
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/j.1365-3091.2011.01300.x
Subject(s) - ichnofacies , geology , trace fossil , ichnology , paleontology , facies , sedimentology , carbonate , sedimentary depositional environment , structural basin , materials science , metallurgy
The classical Middle to Upper Triassic carbonate sections at Monte Santa Giusta and Punta del Lavatoio, North‐west Sardinia (Italy), referred to the Muschelkalk and Keuper lithofacies group, are revisited and their trace fossil content is investigated for the first time. A combined ichnological and sedimentological study reveals insights into the depositional environments, regional context, palaeogeography and sequence stratigraphy. The results indicate deposition on a homoclinal carbonate ramp with broad facies belts. All recognized trace fossils are also known from time‐equivalent deposits of Germany and thus indicate a close affinity between the North‐west Sardinian Triassic and the Germanic Basin. Only a few trace fossils are particularly abundant and these indicate opportunistic colonization by their producers, which is probably related to restricted endobenthic conditions due to reduced oxygen and/or increased salinity. The trace fossil association can be grouped into a softground suite belonging to the Cruziana ichnofacies, and a firmground suite of the Glossifungites ichnofacies. This discrimination enables an interpretation of the northern Monte Santa Giusta section as a carbonate ramp with extensive tidal flats and abundant carbonate accumulation in a relatively proximal position, whereas the southern Punta del Lavatoio section exhibits broad lagoonal environments with reduced sedimentation in a deeper and more Tethys‐influenced area. The Sardinian sections are ichnologically similar to the Anisian–Ladinian succession known from the Tatra Mountains, but differ from it by having a slightly higher ichnodiversity, which again can be attributed to a less restricted lagoonal environment. This study demonstrates the importance of integrating trace fossil analysis in sedimentological and palaeontological investigations of carbonate systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here