Premium
Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean
Author(s) -
Pomar Luis,
Brandano Marco,
Westphal Hildegard
Publication year - 2004
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/j.1365-3091.2004.00640.x
Subject(s) - geology , foraminifera , paleontology , biota , mediterranean climate , oceanography , global cooling , carbonate , late miocene , climate change , earth science , ecology , structural basin , benthic zone , materials science , metallurgy , biology
The presence of foramol, rhodalgal and bryomol skeletal grain associations in ancient shallow‐marine limestones is commonly interpreted as evidence for non‐tropical palaeoclimate, despite temperature being only one of several factors influencing skeletal grain associations. Such interpretations neglect the multitude of factors other than temperature that influence carbonate‐producing biota. These include nutrients, water energy, water transparency, depth of the sea floor, salinity, oxygen, Ca 2+ and CO 2 concentrations, Mg/Ca ratio, alkalinity, substrate requirements, competitive displacement as well as biological and evolutionary trends. This uniformitarian approach also disregards the probability that conditions of present‐day biological systems may not be representative of past conditions of analogous systems. Here, the importance of considering these other factors is illustrated through two examples of carbonate platforms in the western Mediterranean. These platforms are dominated by foramol, rhodalgal and bryomol associations of Miocene age in spite of having formed in tropical conditions. The platforms discussed are: (1) the Lower Tortonian ramp on Menorca, Balearic Islands; and (2) the Lower–Middle Miocene ramps of the central Apennines, Italy. Evidence for tropical conditions in the Mediterranean during the period of growth of these platforms is provided by species of red algae and larger foraminifera, by data from coeval continental basins and by global oxygen isotope data.