z-logo
Premium
Flow, sediment transport and bedform dynamics over the transition from dunes to upper‐stage plane beds: implications for the formation of planar laminae
Author(s) -
BRIDGE JOHN S.,
BEST JAMES L.
Publication year - 1988
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/j.1365-3091.1988.tb01249.x
Subject(s) - bedform , geology , bed load , turbulence , sediment transport , geomorphology , sediment , sedimentary depositional environment , flow velocity , flow (mathematics) , mechanics , physics , structural basin
Preliminary results are reported from an experimental study of the interaction between turbulence, sediment transport and bedform dynamics over the transition from dunes to upper stage plane beds. Over the transition, typical dunes changed to humpback dunes (mean velocity 0–8 ms ‐1 , depth 01 m, mean grain size 0.3 mm) to nominally plane beds with low relief bed waves up to a few mm high. All bedforms had a mean length of 0.7–0.8 m. Hot film anemometry and flow visualization clearly show that horizontal and vertical turbulent motions in dune troughs decrease progressively through the transition while horizontal turbulence intensities increase near the bed on dune backs through to a plane bed. Average bedload and suspended load concentrations increase progressively over the transition, and the near‐bed transport rate immediately downstream of flow reattachment increases markedly relative to that near dune crests. This relative increase in sediment transport near reattachment appears to be due to suppression of upward directed turbulence by increased sediment concentration, such that velocity close to the bed can increase more quickly downstream of reattachment. Low‐relief bedwaves on upper‐stage plane beds are ubiquitous and give rise to laterally extensive, mm‐thick planar laminae; however, within such laminae are laminae of more limited lateral extent and thickness, related to the turbulent bursting process over the downstream depositional surface of the bedwaves.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here