z-logo
Premium
Estimation of some aeolian saltation transport parameters: a re‐analysis of Williams' data
Author(s) -
JENSEN JENS LEDET,
SØRENSEN MICHAEL
Publication year - 1986
Publication title -
sedimentology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 108
eISSN - 1365-3091
pISSN - 0037-0746
DOI - 10.1111/j.1365-3091.1986.tb00760.x
Subject(s) - aeolian processes , geology , jump , grain size , shear stress , shear velocity , mechanics , geometry , geotechnical engineering , geomorphology , mathematics , physics , quantum mechanics , turbulence
A new method for analysing observed aeolian sand transport rate profiles of the kind obtained by Williams is presented. The method involves a mathematical model of aeolian saltation. Detailed information about the saltation process can be calculated from the transport rate profile by means of this model. The method is used to perform a re‐analysis of Williams' trap data. Among the main findings of this analysis is that the grain borne shear stress appears to be a smaller fraction of the total shear stress than assumed by Bagnold & Owen in their theories of aeolian saltation. Other findings are that the probability distribution of the jump height of the grains does not depend much on the wind speed once the saltation is established, and that the vertical component of the mean launch velocity decreases with the grain size. It is approximately inversely proportional to the grain diameter. Our estimates of the landing angles indicate that estimates of the impact angles obtained from photographically recorded trajectories are too small due to biased sampling. The influence of grain shape on the transport characteristics is mainly due to changes in the grains' ability to jump when hitting the bed. It is found that angular grains have a lower mean jump height than spherical grains.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here