Premium
Phylogenetic relationships, pathogenicity and fungicide sensitivity of Greeneria uvicola isolates from Vitis vinifera and Muscadinia rotundifolia grapevines
Author(s) -
Samuelian S. K.,
Greer L. A.,
Cowan K.,
Priest M.,
Sutton T. B.,
Savocchia S.,
Steel C. C.
Publication year - 2013
Publication title -
plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.928
H-Index - 85
eISSN - 1365-3059
pISSN - 0032-0862
DOI - 10.1111/j.1365-3059.2012.02689.x
Subject(s) - biology , fungicide , internal transcribed spacer , cultivar , ribosomal dna , phylogenetic tree , botany , pathogenicity , mycology , horticulture , microbiology and biotechnology , gene , genetics
Greeneria uvicola causes bitter rot on Vitis vinifera (bunch grapes) and Muscadinia rotundifolia (muscadine grapes) in warm moist temperate and subtropical regions. This study investigated the phylogenetic relationship of G. uvicola representatives from Australia (67 isolates), the USA (31 isolates), India (1 isolate) and Costa Rica (1 isolate) and compared their pathogenicity and fungicide sensitivity. Differences in cultural and conidial morphology were observed between the isolates from Australia and the USA. Phylogenetic relationships were determined based on three gene regions: the ribosomal DNA ( rDNA ) internal transcribed spacer 1 (ITS1–5∙8S–ITS2), 28S large subunit (LSU) nuclear rDNA and β‐tubulin‐2. Greeneria uvicola isolates were clearly differentiated into four groups: isolates from Australia and India; USA isolates from V. vinifera ; USA isolates from M. rotundifolia ; and the isolate from Costa Rica. All isolates were pathogenic on V. vinifera (cv. Chardonnay) berries although those originating from M. rotundifolia were not as aggressive as isolates from V. vinifera , irrespective of geographical origin. Sensitivity to pyraclostrobin and salicylhydroxamic acid (SHAM) was studied. Despite differences in fungicide applications, hyphal growth inhibition was not significantly different for geographical location, cultivar, tissue, year of collection or different spray regimes. For the Australian and USA isolates, fungal growth inhibition was significantly greater for pyraclostrobin than for SHAM, and was significantly greater for the combined treatment than for each of the fungicides applied singly. The aetiological and epidemiological knowledge of bitter rot collected through this study will aid better prediction and management strategies of this pathogen.