Premium
Differential seedling resistance to the eyespot pathogens, Oculimacula yallundae and Oculimacula acuformis , conferred by Pch2 in wheat and among accessions of Triticum monococcum
Author(s) -
Burt C.,
Hollins T. W.,
Powell N.,
Nicholson P.
Publication year - 2010
Publication title -
plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.928
H-Index - 85
eISSN - 1365-3059
pISSN - 0032-0862
DOI - 10.1111/j.1365-3059.2010.02307.x
Subject(s) - eyespot , biology , locus (genetics) , quantitative trait locus , plant disease resistance , septoria , fusarium , botany , ascomycota , fungi imperfecti , genetics , gene
Eyespot is an economically important stem‐base disease of wheat caused by two fungal species: Oculimacula yallundae and Oculimacula acuformis. This study investigated the efficacy of two sources of resistance, viz. the genes Pch1 , introgressed into hexaploid wheat from Aegilops ventricosa , and Pch2 , identified in wheat cv. Cappelle Desprez, against O. yallundae and O. acuformis separately. In a series of seedling bioassays Pch1 was found to be highly effective against both species. Although Pch2 was found to confer resistance against both pathogen species, it was significantly less effective against penetration from O. yallundae than O. acuformis . Furthermore, a quantitative trait locus (QTL) analysis was not able to locate any resistance to O. yallundae on chromosome 7A of Cappelle Desprez. This has important implications for the use of Pch2 in commercial cultivars as it is necessary to have genes that confer resistance to both pathogens for effective eyespot control. In addition, a set of 22 T. monococcum accessions was screened for resistance to both O. yallundae and O. acuformis to identify potentially novel resistances and to assess the accessions for evidence of differential resistance to the eyespot species. Significant differences in resistance to the two pathogens were identified in four of these lines, providing evidence for differential resistance in T. monococcum. This study demonstrates that future screening for novel sources of eyespot resistance should investigate both pathogen species.