Premium
Restriction fragment length polymorphisms, races and vegetative compatibility groups within a worldwide collection of Fusarium oxysporum f.sp. gladioli
Author(s) -
MES J. J.,
DOORN J.,
ROEBROECK E. J. A.,
EGMOND E.,
AARTRIJK J.,
BOONEKAMP P. M.
Publication year - 1994
Publication title -
plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.928
H-Index - 85
eISSN - 1365-3059
pISSN - 0032-0862
DOI - 10.1111/j.1365-3059.1994.tb02697.x
Subject(s) - biology , restriction fragment length polymorphism , fusarium oxysporum , compatibility (geochemistry) , botany , genetics , genotype , gene , geochemistry , geology
Isolates of Fusarium oxysporum f.sp. gladioli were collected from widely different geographic areas. These isolates were characterized by pathogenicity to two differential gladiolus cultivars, vegetative compatibility, and total genomic DNA restriction fragment length polymorphisms (RFLPs). RFLPs were used to estimate the genetic divergence and relationship among isolates of F. oxysporum. RFLPs were detected by Southern blot hybridization of total genomic DNA with a 3‐4 kb DNA probe generated from total DNA off. oxysporum f.sp. dianthi. Cluster analysis allowed the division of pathogenic strains into three main RFLP groups, each group containing strains with similarity coefficients ranging from 78 to 100%. RFLP groups correlated with vegetative compatibility groups, not with races. Two single pathogenic isolates which could not be assigned to any of the three main vegetative compatibility groups also had distinctive RFLP patterns. Little genetic polymorphism was observed within vegetative compatibility groups, whereas the majority of RFLPs occurred between vegetative compatibility groups, suggesting a common ancestry for strains within a specific vegetative compatibility group and a polyphyletic origin for the present special form gladioli.