z-logo
Premium
Structure‐function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid
Author(s) -
CANET JUAN VICENTE,
DOBÓN ALBOR,
ROIG ALEJANDRA,
TORNERO PABLO
Publication year - 2010
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.2010.02194.x
Subject(s) - arabidopsis , salicylic acid , allele , function (biology) , biology , perception , genetics , computational biology , gene , neuroscience , mutant
Salicylic acid (SA) is necessary for plant defence against some pathogens, whereas NPR1 is necessary for SA perception. Plant defence can be induced to an extreme by several applications of benzothiadiazole (BTH), an analogue of SA. Thus, plants that do not perceive BTH grow unaffected, whereas wild‐type plants grow stunted. This feature allows us to screen for mutants in Arabidopsis thaliana that show insensitivity to BTH in a high‐throughput fashion. Most of the mutants are npr1 alleles, with similar phenotypes in plant weight and pathogen growth. The mutations are clustered in the carboxyl‐terminal part of the protein, and no obvious null alleles were recovered. These facts have prompted a search for knockouts in the NPR1 gene. Two of these KO alleles identified are null and have an intermediate phenotype. All the evidence presented lead us to propose a redundancy in SA perception, with the paralogs of NPR1 taking part in this signalling. We show that the mutations recovered in the screening genetically interact with the paralogs preventing their function in SA signalling.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here