z-logo
Premium
Managing sulphur metabolism in plants
Author(s) -
HAWKESFORD MALCOLM J.,
DE KOK LUIT J.
Publication year - 2006
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.2005.01470.x
Subject(s) - sulfur metabolism , sulfur , assimilation (phonology) , biology , gene , metabolism , metabolic pathway , cysteine , biochemistry , chemistry , enzyme , linguistics , philosophy , organic chemistry
Resolution and analysis of genes encoding components of the pathways of primary sulphur assimilation have provided the potential to elucidate how sulphur is managed by plants. Individual roles for members of gene families and regulatory mechanisms operating at gene, cellular and whole plant levels have been recognized. Sulphur is taken up and transported around the plant principally as sulphate, catalysed for the most part by a single gene family of highly regulated transporters. Additional regulation occurs in the pathway of reduction of sulphate to sulphide and its incorporation into cysteine, which occurs principally within the plastid. Cellular and whole‐plant regulation of uptake, and the assimilatory pathway attempt to balance supply with demand for growth and include mechanisms for re‐mobilization and redistribution of sulphur. Furthermore, optimization of sulphur assimilation requires coordination with carbon and nitrogen pathways, and multiple processes have been proposed to contribute to this balance. Present studies on cis and trans elements are focusing on transcriptional regulation, but this regulation still needs to be linked to apparent metabolite sensing. Whilst the components of the assimilatory pathways have been resolved after many years of controversy, uncertainties remain concerning roles of individual genes in gene families, their sub‐cellular localization and their significance in balancing sulphur flux to sulphur demand of the plant for growth under variable environmental conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here