Premium
Development of the capacity for isoprene emission in kudzu
Author(s) -
WIBERLEY AMY E.,
LINSKEY AUTUMN R.,
FALBEL TANYA G.,
SHARKEY THOMAS D.
Publication year - 2005
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.2005.01342.x
Subject(s) - isoprene , kudzu , photosynthesis , botany , chemistry , horticulture , biology , organic chemistry , medicine , alternative medicine , traditional chinese medicine , pathology , copolymer , polymer
Isoprene is a biogenic hydrocarbon that has significant effects on tropospheric chemistry. It is emitted by a number of plant species, including kudzu, a leguminous vine that grows profusely in the south‐eastern United States. This study investigated development of the capacity for isoprene emission in kudzu. Previous studies examined isoprene emission during leaf development, but a molecular explanation for the observed developmental delay in emission was lacking. This study found that kudzu leaves grown at a high temperature could emit isoprene at least a week before they were fully expanded and 1 d after becoming photosynthetically competent. When grown at low temperature, however, leaves did not emit isoprene until 1 week after they became fully expanded and 2 weeks after the onset of photosynthetic competence. Levels of mRNA and protein for isoprene synthase, which catalyses the final step in isoprene biosynthesis, were investigated; it was found that transcription and translation of this gene began at the same developmental stage as onset of emission in both growth conditions. Therefore, plant growth conditions, not leaf developmental stage, have primary control over expression of isoprene synthase and onset of kudzu isoprene emission. This finding may be useful in modelling early season isoprene emission rates.