Premium
Root navigation by self inhibition
Author(s) -
FALIK OMER,
REIDES PERLA,
GERSANI MORDECHAI,
NOVOPLANSKY ARIEL
Publication year - 2005
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.2005.01304.x
Subject(s) - pisum , allelopathy , sativum , lepidium sativum , string (physics) , lateral root , obstacle avoidance , limiting , biology , polarity (international relations) , botany , plant growth , germination , mathematics , biochemistry , computer science , cell , engineering , mechanical engineering , artificial intelligence , arabidopsis , gene , mutant , robot , mathematical physics , mobile robot
Circumventing physical obstacles is critical for a plant's survival and performance. Although the ability of roots to circumvent obstacles has been known for over 100 years, the phenomena and its mechanisms have received relatively little attention. In this study it is demonstrated that roots of Pisum sativum are able to detect and avoid growth towards inanimate obstacles and the hypothesis that this behaviour is based on the sensitivity of roots to their own allelopathic exudates that accumulate in the vicinity of physical obstacles is tested. The development of lateral roots of Pisum sativum towards an obstacle (a piece of nylon string, similar in dimensions to a plant root) was followed. Lateral roots were similar in number, but significantly shorter in the direction of the nylon string. In addition, up to half of the lateral roots that developed towards the nylon string withered, whereas no withering was observed in the absence of the nylon string. These avoidance growth patterns were suppressed in the presence of potassium permanganate or activated carbon, indicating a role of allelopathic exudates in promoting obstacle avoidance. The demonstrated obstacle avoidance by self inhibition could increase plant performance by limiting resource allocation to less promising parts of the root system.