z-logo
Premium
Acclimation processes in the light harvesting complex of the red alga Porphyridium purpureum (Bory) Drew et Ross, according to irradiance and nutrient availability
Author(s) -
ALGARRA P.,
RUDIGER W.
Publication year - 1993
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1993.tb00856.x
Subject(s) - phycoerythrin , acclimatization , phycobilisome , botany , biology , irradiance , photosynthesis , biophysics , algae , nutrient , pigment , food science , chemistry , cyanobacteria , bacteria , ecology , physics , microbiology and biotechnology , optics , flow cytometry , genetics , organic chemistry
The time‐course of acclimation (0‐5h) of the red alga Porphyridium purpureum with respect to total proteins, phycoerythrin (PE) and phycobilisomes (PBS) has been studied at different N availability and different light regimes. After a high N input, acclimation takes place in two phases. The first one, which is photoindependent is characterized by simultaneous increase of proteins and PE. At low N input, this first phase is not detected. In the second phase the PE content increases only under low light together with an increase of the PBS size, followed probably by an increase in the number of PBS. The effectiveness of the energy transfer increases under these conditions. A rapid decrease in the PBS size correlated with a decrease of the energy transfer is observed at high irradiance. Free PE plays an important role in the organization‐disorganization of the PBS at low N concentration (inverse correlation between free PE and PE attached to PBS). Free PE is not accumulated in the cell after a high N input at high irradiance. Independently of photoacclimation, two species of PBS appear with different PE content and different capacities to aggregate with other compounds. A clear correlation appears between the level of coupling of the PBS and the fluorescence ‘in vivo’ of the whole cells. The comparison between dissociated and undissociated PBS as well as between PBS obtained after the different acclimation processes allows the determination of the presence of two linker polypeptides probably associated with B‐PE (37 and 32–5 kDa) and two associated with PC and APC (27 and 25 kDa). That suggests that acclimation of PBS requires a parallel stoichiometric response of biliproteins and the linker polypeptides involved in the efficiency of the energy transfer.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here