Premium
The coupling between extra‐ and intracellular electric potentials in Bidens pilosa L.
Author(s) -
FRACHISSESTOILSKOVIĆ J. M.,
JULIEN J. L.
Publication year - 1993
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1993.tb00481.x
Subject(s) - apoplast , symplast , extracellular , membrane potential , transmembrane protein , biophysics , intracellular , transmembrane domain , biology , chemistry , botany , biochemistry , membrane , cell wall , receptor
The extracellular electrical potential in Bidens pilosa has been compared with the transmembrane potential in hypocotyl cells. We found that variations in the extracellular electrical potential, induced by different KCI concentrations, were identical to the variations of the transmembrane potential. In order to explain the strong correlation between the extracellular potential and the transmembrane potential, an interpretative model based on the electrical diagram of the plant was tested. From our data, we found that: (1) the symplast behaves as a low resistance pathway compared with the apoplast; and (2) the cell wall contributes weakly (20% at the most) to the transmembrane potential. It is concluded that each hypocotyl cell is strongly coupled electrically with its neighbour. This property, together with the high apoplast resistance, accounts for the similarity in the extracellular and transmembrane potential measurements. These properties, which are characteristic of excitable organs, support the existence of action potentials in Bidens.