z-logo
Premium
Dirunal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities
Author(s) -
KAO W.Y.,
FORSETH I. N.
Publication year - 1992
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1992.tb01012.x
Subject(s) - photosynthesis , nitrogen , chlorophyll fluorescence , chemistry , rubisco , horticulture , botany , nitrogen deficiency , chlorophyll , biology , organic chemistry
Diurnal heliotropic leaf movements, photosynthetic gas exchange, and the ratio of variable fluorescence to maximum fluorescence (Fv/Fm) of unrestrained and horizontally restrained leaves from soybean ( Glycine max cv. Cumberland) plants grown in two different water and two different nitrogen treatments were measured. Leaves of plants grown in low water or low nitrogen availability treatments displayed more pronounced diaheliotropism (solar tracking) in the afternoon and a longer period of paraheliotropism (light avoiding) at midday relative to those of well‐watered, high‐nitrogen‐grown plants. Photosaturated photosynthetic rates and the photon flux required to saturate photosynthesis were reduced by water stress and nitrogen deficiency. Compared to horizontal leaves, irradiance on orienting leaves was nearer to the breakpoint of the photosynthetic light response curve, where photosynthesis is co‐limited by ribulose biphosphate regeneration and carboxylation. This would increase the carbon return on investments of nitrogen into photosynthesis. A positive linear relationship between Fv/Fm and quantum yield of photosynthesis was measured. Leaves of low‐nitrogen‐grown plants had earlier and more prolonged reductions in Fv/Fm at midday compared to leaves of high nitrogen grown plants of the same water treatment. Within the same water and nitrogen treatment, horizontally restrained leaves had lower midday Fv/Fm in relation to orienting leaves. Nitrogen deficiency and water stress enhanced this difference such that horizontally restrained leaves of low water and low nitrogen grown plants had earlier and longer midday depressions in Fv/Fm.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here