z-logo
Premium
Differentiation of freezing tolerance and vernalization responses in Cruciferae exposed to a low temperature
Author(s) -
LAROCHE A.,
GENG X.M.,
SINGH J.
Publication year - 1992
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1992.tb00994.x
Subject(s) - vernalization , biology , brassica , arabidopsis thaliana , acclimatization , botany , ecori , dna , genetics , gene , photoperiodism , mutant , restriction enzyme
High levels of freezing tolerance were induced in leaves of different Cruciferae species including Brassica napus, Arabidopsis thaliana, Barbarea vulgaris, Thlaspi arvenses and Descurainia sophia by low‐temperature acclimation. Concomitantly, the amount of total RNA doubled in these three species. Analyses of methylation patterns and dosage of rRNA genes were carried out to determine whether or not alterations occur in this DNA during development of freezing tolerance. Hybridizations of Southern transfers with an rDNA probe revealed two additional EcoRI sites in purified DNA isolated from freezing‐tolerant leaves of winter B. napus cv Jet Neuf and D. sophia (both of which require low temperatures for vernalization), but not in isolates of A. thaliana or spring B. napus cv Topas. An increase of rDNA cistrons was also observed in both B. napus cv Jet Neuf and D. sophia but not in A. thaliana or B. napus cv Topas upon cold acclimation. These results suggest that low temperature induced amplification of rDNA and the differential methylation of EcoRI sites may possibly be related to the vernalization process but may not be related to the development of freezing tolerance. However, the higher activity of RNA polymerase (2.5 times more) observed upon cold acclimation may explain the concomitant increase in total RNA and may be related to the development of freezing tolerance in the Cruciferae.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here