Premium
Stomatal responses to humidity in air and helox
Author(s) -
MOTT K. A.,
PARKHURST D. F.
Publication year - 1991
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1991.tb01521.x
Subject(s) - transpiration , humidity , water vapor , stomatal density , relative humidity , chemistry , photosynthesis , botany , horticulture , biology , meteorology , physics , organic chemistry
. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO 2 and water vapour added), which we termed ‘helox’. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water‐vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO 2 concentration at the evaporating surfaces ( c i ), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant c i , suggesting heterogeneous (patchy) stomatal closure.