z-logo
Premium
The effect of air pollutants on physiological processes in plants
Author(s) -
DARRALL N. M.
Publication year - 1989
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1989.tb01913.x
Subject(s) - pollutant , photosynthesis , carbon dioxide , assimilation (phonology) , respiration , environmental chemistry , ozone , chemistry , environmental science , agronomy , botany , ecology , biology , linguistics , philosophy , organic chemistry
. Important physiological processes, photosynthesis, respiration, carbon allocation and stomatal function are known to be affected by air pollutants. A wide range in sensitivity of photosynthesis both within and between species is evident from the literature for the pollutants sulphur dioxide, ozone, nitrogen oxide and hydrogen fluoride. Some of this variation is clearly due to genetic factors, but much is in response to differences in environmental conditions both prior to and during fumigation. Exposure of plants to mixtures of pollutants generally reduced the threshold at which effects were first detected and increased the level of inhibitory responses. In the majority of studies on stomatal responses to air pollutants, opening occurs at low concentrations, below the threshold for effects on photosynthesis, and closure occurs at injurious concentrations; this latter response often following the inhibition of photosynthesis. Effects on carbon allocation have been reported in response to air pollutants. Changes usually favour leaf development over root growth, which can compensate for a decline in net assimilation rate up to a certain point but may limit water uptake from soils with low moisture content. Future research into physiological effects of air pollutants should incorporate an integrated approach in which both key physiological parameters and growth parameters are measured together with estimates of the effective dose of pollutant. In this way, the underlying mechanisms to changes in growth and development will be more fully understood.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here