z-logo
Premium
Adaptations by macroalgae to low carbon availability. I. A buffer system in Ascophyllum nodosum , associated with photosynthesis
Author(s) -
AXELSSON L.,
CARLBERG S.,
RYBERG H.
Publication year - 1989
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1989.tb01637.x
Subject(s) - ascophyllum , seawater , photosynthesis , alkalinity , algae , botany , intertidal zone , ulva lactuca , total inorganic carbon , artificial seawater , chemistry , carbon dioxide , environmental chemistry , biology , ecology , organic chemistry
The exchange of CO 2 , H + and O 2 between seawater and the intertidal brown macroalga Ascophyllum nodosum (L.) Le Jolis were measured in a flowthrough system. While the algae were kept in darkness, seawater with artificially increased alkalinity and pH at 9.85, was alternated with ‘normal’ seawater at pH 8.0. A proton buffering system, with capacity to release and reabsorb about 20 μmol protons per gram alga (fresh weight) was revealed. As the algae were returned to the ‘normal’ seawater, the kinetics of proton reabsorbtion indicated that a proton uptake was gradually induced. This proton uptake, which was not connected to ion exchange in the cell wall, reached its maximum after 12 h. If subjected to high alkalinity seawater in the light, A. Nodosum for a certain period of time was capable of carrying out O, evolution in excess of the import of inorganic carbon. This ‘photosynthetic buffering capacity’ amounted to about 17 μmol O; per gram alga. Besides depending on a buffer of photorcducible substances, this ‘photosynthetic buffering capacity’ appeared to be functionally connected with the proton buffer. The time course for the discharge of the ‘photosynthetic buffer system’ and for the reabsorbtion of protons into the proton buffer (about 6h for 90× of the capacity at a temperature of 6°C) suggests that the ‘photosynthetic buffer system’ has a functional importance in the adaptation of A. nodosum to intertidal regions. The function of the buffer system is discussed in relation to the crassulacean acid metabolism (CAM)‐like characteristics recently shown for the intertidal brown algal family Fucaceae.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here