z-logo
Premium
Multiple or multiphasic uptake mechanisms in plants?
Author(s) -
NISSEN P.
Publication year - 1987
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1987.tb01825.x
Subject(s) - diffusion , chemistry , thermodynamics , michaelis–menten kinetics , kinetics , biochemistry , physics , enzyme , quantum mechanics , enzyme assay
Borstlap (1983) has alleged that (a) there are no abrupt changes in curves for the concentration dependence of solute uptake in plants, and (b) many such uptake isotherms may be described by the sum of two Michaelis‐Menten terms and a linear term. These claims are considered in detail in connection with the recent finding (Nandi, Pant & Nissen, 1987) that phosphate uptake by corn roots increased more rapidly within the higher phases, i.e. at high external phosphate concentrations, but also levelled off faster than predicted from Michaelis‐Menten kinetics. Similar deviations are, in retrospect, also found for uptake of other solutes and result in fewer phases at high external solute concentrations. The simplified and strikingly similar multiphasic patterns in the present paper show that (a) the abrupt changes in published isotherms are not due to error in the data, and (b) uptake isotherms cannot be adequately represented by the sum of two Michaelis‐Menten terms and a linear term, or by similar continuous functions, if sufficiently detailed and precise data are used. These findings are not consistent with the existence of multiple uptake mechanisms, including free diffusion, in the plasmalemma. Uptake occurs instead by a single, multiphasic mechanism for each solute or group of related solutes. The similarities in the multiphasic patterns indicate, furthermore, that influx of the various solutes may be coupled.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here