Premium
Measurement of free space and sorption of large molecules by cereal roots
Author(s) -
SHONE M. G. T.,
AFRC A. V. FLOOD
Publication year - 1985
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/j.1365-3040.1985.tb01404.x
Subject(s) - polyethylene glycol , adsorption , peg ratio , mannitol , chemistry , kinetics , membrane , molecule , sodium , polymer , solubility , sorption , ion , chromatography , chemical engineering , inorganic chemistry , organic chemistry , biochemistry , physics , finance , quantum mechanics , engineering , economics
. Large molecular weight solutes that do not penetrate the root have been used to correct for the surface film in measurements with mannitol of the volume of the Apparent Free Space (FS) in bailey roots. The results are compared with those obtained using other correction techniques for elimination of the surface film. Large molecules seem to be adsorbed on the root surface and the kinetics of adsorption differ between the polyhydric alcohol mannitol or the polysaccharide dextran on the one hand, and the polyether polyethylene glycol (PEG‐4000) on the other. The significance of this difference in kinetics is discussed in relation to the use of PEG as an osmoticum in studies on root water relations and its effect on ion uptake. Although smaller molecular weight PEG's penetrate the FS and diminish sodium uptake from 10 mol m −3 NaCl, more dilute solutions of mannitol and larger PEG polymers are unlikely to affect ion uptake from dilute nutrient solutions. Use of these substances along with labelled nutrients in kinetic studies of the compartmentation of ions in roots can help to distinguish between ions associated with the surface film, those in the FS and those that have crossed the cell membranes into the protoplast.