z-logo
Premium
Developmental changes in the patterns of feeding in fourth‐ and fifth‐instar Helicoverpa armigera caterpillars
Author(s) -
Raubenheimer D.,
Browne L. Barton
Publication year - 2000
Publication title -
physiological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 57
eISSN - 1365-3032
pISSN - 0307-6962
DOI - 10.1111/j.1365-3032.2000.00212.x
Subject(s) - biology , helicoverpa armigera , instar , lepidoptera genitalia , meal , larva , noctuidae , zoology , ecdysis , stadium , ecology , food science , geometry , mathematics
Summary Data are presented for developmental changes in feeding behaviour within and across the fourth and fifth stadium of Helicoverpa armigera (Lepidoptera, Noctuidae) caterpillars fed nutritionally homogeneous semi‐synthetic foods. We recorded the microstructure of feeding over continuous 12‐h periods on consecutive days throughout the two stadia, and in one experiment recorded continuously for 21 h. Larvae in the two stadia showed the same general pattern of macro‐events in feeding, including a similar duration of post‐ecdysis fast, which was usually broken by consumption of the exuviae, and then a sustained period in which discrete meals on the experimental food were taken regularly. There were, however, some distinct differences in the patterns of meal‐taking both between stadia and across different one‐third time segments within stadia. Considering between‐stadium differences, the proportion of time spent feeding differed significantly only in the last segment of the feeding period of the two stadia, with the value for the fourth‐instar larvae being substantially greater than for fifth‐instar larvae. As regards within stadium changes, the proportion of time feeding increased from the first to the second segment of both stadia. However, whereas the proportion of time feeding increased from the second to the final segment of the fourth stadium, it decreased across the same period in the fifth stadium. These patterns of changes in the proportion of time feeding within and between stadia, and their behavioural mechanisms (combination of meal durations and meal frequencies), can be explained only partially with reference to increasing food requirements with development. Three areas are identified where further study might help elucidate the reasons for the observed developmental changes in the microstructure of feeding: allometric constraint, the dynamic links between ingestion and post‐ingestive processing, and ecological factors such as predation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here