z-logo
Premium
Locust flight initiation: a comparison of normal and artificial release
Author(s) -
Kutsch W.,
Fuchs U.
Publication year - 2000
Publication title -
physiological entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 57
eISSN - 1365-3032
pISSN - 0307-6962
DOI - 10.1111/j.1365-3032.2000.00207.x
Subject(s) - wing , jump , structural engineering , simulation , engineering , control theory (sociology) , physics , computer science , artificial intelligence , control (management) , quantum mechanics
Summary Flight initiation was analysed in the migratory locust, Locusta migratoria L. using conventional and high‐speed video systems. Flight was initiated by three methods: normal jump, free fall and controlled catapult. Parameters evaluated were  time from release to wing‐opening, body angle, speed, height gain, wing‐opening, initial wing‐beat frequency. Fastest wing‐opening occurred following a normal jump. A catapult device allowed manipulation of the launching parameters: speed and angles at launching. It appeared that in an artificially catapulted start there was a minimum speed (v > 0.75 m/s) required to initiate flight. However, under free‐fall conditions a mean speed of v = 0.6 m/s at wing‐opening was observed. When the different parameters of the controlled catapult start were equal to those for normal jump then the time to wing‐opening was found to be extended for the catapult launch. However, other parameters were not affected, occasionally even a ‘kick in air’ was observed. The catapult launches indicated that within about three wing‐beat cycles the animals showed active flight, with positive lift and constant or increasing speed, compared to a ballistic trajectory. Our results indicate that a controlled catapult device will prove useful to the study of sensory and central processes underlying free flight initiation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here